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A series of "How to" 
guides
“HOW TO” GUIDE #6: This guide is one of seven produced 
by the project Learning in Undergraduate Mathematics: 
The Outcome Spectrum (LUMOS). LUMOS examined 
the learning outcomes of undergraduates in the 
mathematical sciences. 

The full list of titles in the series is:

"How to" Guide #1: Implement team-based learning 

"How to" Guide #2: Implement semi-authentic 
mathematical experiences

"How to" Guide #3: Shift responsibility for learning onto 
students 

"How to" Guide #4: Monitor feelings and beliefs about the 
mathematical sciences 

"How to" Guide #5: Monitor the development of 
mathematical communication 

"How to" Guide #6: Generate conceptual readiness 

"How to" Guide #7: Develop mathematical habits
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to know what to do, and why, but they also must be 
able to anticipate the outcome of their work, have a 
wider vision of the topic, know alternative methods 
of approaching a problem, and be able to link their 
learning to other things they know (see, for example, 
Keene & Fortune, 2016).

In secondary education, work has been done on 
Mathematics Eliciting Activities (MEAs). This is an 
approach used to develop realistic scenarios, which 
would enforce mathematical thinking in order to reach 
a resolution (Lesh, Hoover, Hole, Kelly, & Post, 2000). 
MEAs have been used in New Zealand; see Yoon, Patel, 
Radonich, & Sullivan (2011). 

However, the principles of designing MEAs need to 
be adapted for undergraduate level because not all 
important concepts are easily approached through a 
realistic scenario—for example, mathematical induction.

A research group associated with the LUMOS project 
have undertaken this adaptation and trialled some 
tasks designed for conceptual readiness. Much of the 
work focused on graph theory and, in particular, proof 
by induction.

Conceptual 
Readiness
Conceptual readiness is the idea that, 
in order to get the most out of a lecture, 
students need to be conceptually prepared 
for the information they are about to receive.
We believe that the traditional lecture format can be a 
powerful method of delivery, provided that all students 
are conceptually ready for what is being presented. 
Currently lectures proceed with many students not 
understanding the need for, or the concepts behind, the 
topic. Prior to a lecture, students need opportunities 
to struggle, to notice the limits of their own knowledge, 
and to become aware of what they do not know. 
Ideally students need to be mentally at the edge of 
a deep mathematical idea. This is what is meant by 
“conceptually ready”.

Our experience is that it is possible, with suitably 
designed tasks, to prepare students to better receive 
lecture material. The design and delivery of those tasks 
is described in this guide.

Conceptual learning has become a focal point of 
literature on mathematics education since Richard 
Skemp’s writing on relational and instrumental 
understanding (Skemp, 1976). The former is 
characterised as “knowing what to do and why”, the 
latter as “rules without reasons”. It is an unfortunate 
side effect of the focus on assessment and grades that 
students are able to pass many undergraduate courses 
with very little relational understanding, but using their 
instrumental understanding.

Contemporary educators are much more nuanced 
in their descriptions of types of understanding, and 
recognise overlaps and the dependence on context. 
Furthermore, the learning value of different kinds of 
understanding are now better understood. Nevertheless, 
undergraduate lecturers still strive to help students 
become deep learners. Not only do they want students 
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Access principles

•	 Interest principle: The task must be interesting 
for most students.

•	 Rule play principle: The task must be amenable 
to rational analysis.

•	 Messy play principle: The task must provide the 
opportunity for exploration and creativity.

•	 Alignment principle: The task must align with the 
target concept.

Work principles 

•	 Product principle: The task must result in some 
mathematics being produced.

•	 Necessity principle: Students must be able to see 
the need for the product.

•	 Focus principle: The task must focus on bringing 
some mathematical topic to the fore.

•	 Accountability principle: Each student must be 
accountable to someone for their reasoning and 
thinking on the task.

•	 Elegance principle: The result of the task must 
have aesthetic value.

•	 Generalisation principle: The result of the task 
must be easily adaptable for other situations.

Principles for 
Designing Readiness 
Tasks
The activities outlined in this booklet are designed to 
be pre-lecture activities undertaken in a tutorial-type 
setting. Although it might be possible to set tasks as 
homework, our experience is that better thinking takes 
place in groups.

The aim is to create learning environments where 
students will struggle and get stuck (but not give up), 
and thereby force deeper mathematical thinking. Such 
thinking will prepare them for the mathematics to come 
in their courses.

In most situations, where students are stuck it is 
because they cannot access the material they need 
to know, either because it has been forgotten, the 
appropriate material was not identified, or perhaps it 
was never learned in the first place. Therefore, a useful 
approach is to create a situation that does not rely on 
some piece of learned material, but rather requires 
students to think deeply about the situation, bringing a 
variety of ideas and approaches.

We have developed a set of principles for designing 
tasks that will achieve this goal. Four principles describe 
the way the student accesses the activity. The other 
principles describe the work to be done.
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The first sample approach describes an attempt to 
induce “stuckness” in a group of students working with 
combinatorics. It illustrates how a sequence of tasks 
can be designed to lead students into readiness for 
complex mathematical ideas.

A group of third year undergraduate students 
volunteered for a trial in which they worked on a 
sequence of four tasks in combinatorics. The tasks were 
designed to produce conceptual thinking by creating 
situations in which they would get stuck but would 
continue to work.

The required mathematics for the tasks had already 
been covered in their courses (and they had access 
to a basic text), but the tasks were not amenable to a 
direct approach using this material in familiar ways. 
In addition, these students had been in a Team-Based 
Learning environment (see Guide #1 in this series). 
Therefore, they were experienced with team work, 
(and hence the Accountability Principle was already 
achieved), and enjoyed this mode of learning. Finally, 
these students were well-motivated, and so already 
showed an interest in the topic.

The first task begins with the story of the well-known 
Erdös-Bacon number, introducing the notions of a 
network and degrees of connectedness. The problem 
statement poses a situation in which a New Zealand 
tourist acquired a new set of Kiwisms. Upon returning 
home, she wishes to spread one of the new words 
throughout her network of friends and must devise 
an algorithm that would determine the first person 
with whom she must share the word, so as to reach 
everyone in the network in the least amount of time. 
The Interest Principle is thus achieved. From a graph-
theoretical point of view, the task is an introduction to 
notions of connectivity, such as vertex-degree, distance, 
eccentricity, centrality, and connectedness. The Rule 
Play Principle therefore applies.

The second task revolves around a given algorithm that 
is deliberately defective in several aspects. Students 
are provided with a number of scenarios relating to the 
algorithm. They are required to identify issues with it 
(Messy Play Principle) and to propose improvements. 
As a result, they are encouraged to refine their own 
algorithm devised in the first task (Alignment and 
Product Principles).

In the third task the concept of a cut vertex is 
introduced under the name “pivotal person”. The 
original context (Task 1) is altered by removing the 
assumption that any person who learns the new word 
shares it with all his/her connections. Students are 
required to test (and modify) their initial interpretation 
of pivotal person, think of ways that a pivotal person 
can be identified in an arbitrary network, and begin 
to think about ways of extending and generalising 
the concept towards (say) some notion of pivotal 
people. The third task brings the Necessity, Focus and 
Generalisation Principles into play.

Sample 
Approaches

Getting  
stuck with  

Combinatorics
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Given the aim to bring about stuckness, the final task 
is centred on the concept of separating sets, which 
is to some extent an extension of the pivotal person 
introduced in the third task. The primary goal is to 
observe how students go about re-structuring what they 
have learned/seen (in previous tasks) in order to make 
sense of a novel situation.

For full details of the task sequence, please see 
Appendix A of Moala (2015).

The results of the study included:

•	 The sorts of things that were not helpful 
to the group when they were stuck (e.g. 
an overemphasis on dominant, but often 
inadequate ideas).

•	 General unfavourable characteristics of the 
group's thinking that were perhaps induced 
by the condition of being stuck (e.g. increased 
immersion in instant gratification).

•	 The sorts of things that were helpful to the 
group when they were stuck (e.g. re-presenting 
the problem in a different manner).

•	 Some things that might aid a novice's ability to 
cope with being stuck (e.g. developing the ability 
to sensitise oneself to being stuck). 

This preliminary study had several limitations 
(described in the work), but showed how significant 
work (the equivalent of four tutorial sessions) led to a 
group of students deeply engaging mathematically with 
a situation beyond their individual levels of expertise. 
This was done in such a way that their further study 
of combinatorics was enhanced—their readiness for 
formal presentation of the concepts they “playfully” 
approached was significantly enhanced.

The second sample approach was the trial that led to 
the formation of several of the principles mentioned 
above. The trial involved developing tasks that would 
lead students towards the idea of mathematical 
induction. Earlier literature had identified early 
concepts leading to induction, labelled quasi-induction. 
Two tasks were developed aimed at these concepts, 
and trialled with three groups of first year mathematics 
major undergraduates.

The first task involved setting up dominoes on end so 
that, with one touch, a whole row would fall over. By 
creating branching rows, questions were asked like: 
“make a row of dominoes such that it is possible to 
make 1, 2, 3, 4, 6, 7, 8, or 9 dominoes fall. Note, it must 
not be possible to make 5 dominoes fall”.

The second task involved cutting a disc (“cake”) into as 
many pieces as possible with 1, 2, 3, 4,  
… straight cuts.

Both tasks involved a considerable number of 
subsidiary questions and requests for justifications. See 
the Appendices in Davies (2011) for details.

When trialled, the first task did produce some (but 
not all) proof schemes that were related to quasi-
induction. However, the second task produced mostly 
empirical proof schemes as students resorted to “find 
a formula”. Analysis of the student work on the tasks 
exposed deficiencies in the tasks. The analysis led to 
the formation of the set of principles above.

Quasi-induction 
Tasks
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Schwartz and Martin (2004) also focused on preparation 
for future learning, and advocated “ invention activities” 
as a way of doing this. Their work was with junior 
secondary students in a statistics context, but raised 
the idea of creative and explorative activities to 
generate conceptual readiness.

Others working in undergraduate mathematics have 
trialled tasks for use by undergraduate students to 
promote mathematical thinking. Breen and O’Shea (2011) 
report on tasks that are used as homework problems.

Other writers have proposed different activities directly 
aimed at deepening conceptual understanding. In New 

Zealand, Sergiy Klymchuk at Auckland University of 
Technology investigated the use of counter-examples in 
another Ako Aotearoa project (Klymchuk, 2009).

The use of writing to enhance conceptual 
understanding has long been promoted as a useful 
technique, although few practical approaches have 
emerged. Reynolds, Thaiss, Katkin, and Thompson (2012) 
review the literature and recommend assignments that 
1) focus critical reflection on one's beliefs regarding 
knowledge, and 2) assignments that engage the student 
in formulating a reasoned argument.

Using  
Counter-Examples 

and other 
resources
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Concluding 
Comments
We strongly recommend using at least some tutorial 
time to prepare for the ideas being introduced in 
lectures, as opposed to practising or revising ideas that 
have already been presented. This is the basic idea of 
conceptual readiness.

Exactly how this preparation takes place is deeply 
context dependent. It is particularly affected by the 
content of the course, and the background and habits 
of the students. This guide contains some examples of 
tasks that were tried for this purpose. 

At this point we recommend:

•	 Tasks should be attempted in groups, probably 
of three students or possibly pairs of students.

•	 Tasks should be designed with the ten principles 
mentioned on page 5 in mind.

•	 The tutorials should be held immediately prior 
to the lecture in which the main concept is 
introduced.

•	 Work on these tasks should not become part of 
the course assessment.

We would very much like to hear of other  
attempts, successful or not, so that we may learn 
as a community. Please contact the Department of 
Mathematics at the University of Auckland  
(email: enquiries@math.auckland.ac.nz).
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